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ABSTRACT

The stability of a self-gravitating, non-rotating, plane-parallel, isothermal

gas layer with equipartition magnetic and cosmic-ray components, immersed in

a rigid isothermal layer of stars, is considered with respect to waves with

motions perpendicular to the Be - g plane, where Be and ge are the equilibrium

magnetic and gravitational field vectors. The magnetic field and cosmic-ray

gas hinder gravitational instability, increasing the minimum length necessary

to produce instability by the factor (1 + a + i)l1/2 , where a is the ratio of

magnetic pressure to gas pressure and fi is the ratio of cosmic-ray pressure

to gas pressure.
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I. INTRODUCTION

In Paper I of this series (Kellman 1972a) we calculated the distribution

above the galactic plane of an isothermal, plane-parallel layer of gas with

equipartition magnetic and cosmic-ray components, immersed in an isothermal

layer of stars. In Paper II (Kellman 1972b) we considered the gravitational

stability of the gas layer with respect to plane and axially-symmetric perturba-

tions, neglecting however the effects of the magnetic and cosmic-ray components.

The result was that the presence of a stellar component increased the radius

of the marginally unstable state in the symmetry plane, but only slightly. In

Paper III (Kellman 1972c) the stability analysis was modified by the inclusion

of a one-dimensional equipartition magnetic field. When disturbances propagate

across the magnetic field, the minimum length necessary to produce gravitational

instability is increased by the factor (1 + a) 1
/ 2 , where a is the ratio of magnetic

pressure to gas pressure. No such simple expression is obtained when disturbances

propagate along the magnetic field.

It is our purpose here to include an equipartition cosmic-ray gas in the

analysis. We consider only the stability of waves (with wave vector k!) propagating

across the magnetic field. Motions are constrained to be perpendicular to the

B - ge plane, where Be and ge are the equilibrium magnetic and gravitational

field vectors. As we stressed in Papers II and III, the stability analysis may shed

light (i) on the existence of large-scale structure (1 - 2 kpc, 107 M,) observed
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in the gaseous component of spiral arms in the Galaxy (McGee and Milton. 1964),

and (ii) on the excitation of density waves in the Galaxy by Jeans' type instabili-

ties in the gas layer beyond the corotation distance (Lin 1970), ultimately

leading to the formation of spiral structure.

II. STABILITY ANALYSIS

The relation between the vectors B, ge, and k and the xyz coordinate

system is shown in Figure 1. The basic equations to consider are the continuity,

momentum, hydromagnetic, Poisson, and heat equation, plus an additional equa-

tion expressing the fact that the cosmic-ray pressure is a constant of the motion;

which follows from the fact that the sound speed of the cosmic-ray gas is much

greater than any other wave velocity considered here (Parker 1966; Field 1970):

ddt P .+ P V'v = O (1)

p -+ P d .v -tB + VB2 + pg V = O (2)VP + p v -4- (2)

B - x ( x B) = 0 (3)
at

4 7TG(pg + p) -V 2 (g +k4) = (4)

p =( velpg (5)
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dt PC 0. (6)dt- Pc-r.= 0.

p, p, X, and ~ are, respectively, the density, pressure, gravitational potential,

and magnetic field strength. v is the gas velocity, a first order quantity.

(vt2) is the mean square z turbulent gas velocity dispersion. The subscripts

g, *, and c-r denote gas, star, and cosmic-ray, respectively. Perturbations

of the form

Pg = Peg + Ag (7)

Pg = eg + Apg = (v2) pg (8)

Pc-r =Pec-r +AP-r (9)

<(kg =kegg + g (10)

e = g 0'egg +( ¢e* +A Ag (11)

B=B +AB (12)

are applied to equations (1)-(6), and terms only to first order in the perturbed

quantities are retained, with the result that

-at p+ tZ·Vp c+P 7 v0 ;IO (13)

+ (Vt1z ) V~p (14)V eAP +V,, pg +Peg < v + VAp. + (Be B) + Pg VAg = 0(14)
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B aB + v-VB + Be (Vv) - (B* V) = O (15)

-ap+ vp (16)--t AP- r + VPecr 
=

(16)

4vtp - V2a = 0. (17)

The subscript 'e' refers to the equilibrium quantities; A refers to the perturbed

quantities.

The coefficients of equations (13-)-(17) are all independent of t, x, and y,

enabling us to Fourier analyze in these variables (3/3t -. n, '/a x ik
x

= 0,

a/'y -. iky ), with the result that, written in component form, equations (13)-(17)

become

nAp + ikypevy + (Pez +dz Pg) v = 0 (18)

B
iky (V) Apg + ne + iky Pc + iky APc. + iky e AB + iky Peg Lg = 0 (19)

(v2Z) g3 AP d + Pgv +n 'z +- -a AB"

1 d
+4 AB dz B + Pee -z o a=. o (20)

ikyBv + e + v4 +nAB = 0 (21)iky Be vy + (B a' ) d v+nAB =O (21)
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dvz Pe + nApc-r =O (22)

-47GTPg + (Z
2

- k) tg =0. (23)

Equations (19) and (20) are the y and z components of the momentum equation;

equation (21) is the x component of the hydromagnetic equation.

As in Paper II, we assume that

TdZ P, = fgp, (24)

from which it follows that

d Be fB (25)
dz 25)

and

d
dZ Pc-r = fec-r' (26)

since B2/pe and Pec r/Peg are assumed to be independent of z. Equation (24)

is consistent with the presence of a stellar component. Further, one can show

that

_d e =_(v2,) f (1 + a +/S) (27)

1e aB =( + f /2 x (28)
Be
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and

P A ( f) AP, (29)

where a = B 2 /87Tpeg (v2 z is the ratio of magnetic pressure to gas pressure

and p = p r/Peg (v2 ) is the ratio of cosmic-ray pressure to gas pressure.

We restrict the analysis to the marginally unstable state by setting n = 0. In

addition, we define the variables E, 3, y, and qb by the equations

e = Apg/Peg (30)

6 x/Be (31)

y = AP,.,/(vtz, (32)

~ = 4g/(Vt2z). (33)

With these various substitutions and restrictions, the system (18)-(23) reduces to

e + y/Peg + 2aS + J = 0 (34)

f a Peg aZ _ + 2a (+ + -a q (35)

- 47TGpe 
, Geg E ( -Ž k 2) = 0. (36)

(vt2 Y

One can easily show that

Pe ay Pe f)' y (37)
Peg ~'- ~ -('z + fPeg
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and defining the variable - by the equation

T =/Peg +2a$,

the system (34)-(36) becomes'

E + +'k= 0

(a - fa f) e + -a + r) + +=0Iz

4 7Geg ( 2 _ k2 =0.

(vtz)

We differentiate equation (39) and subtract equation (40), with the result that

-r = (a + f) e, (42)

and from equation (39) it follows that

E_ -
(1 + a + f)

(43)

Equations (41) and (43) are combined to yield a single second order differential

equation in the variable 4:

32 1 Peg
* + 

3z 2 2Hg (1 + a + ) Pego
2H 

] = 0,
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where Pego is the value of Peg at the symmetry plane z = 0. Hg is a scale

height for the gas distribution in the z direction in the limit that a - 0 and /- 0,

and has been defined by equation (13) of Paper II:

(V2 >
H2 = (45)
g 8 7TGPego

The appropriate boundary conditions to impose on equation (44) are

(z =0) =0 (46)

Izlo

Equation (46) results because b = A/g / (v2 z) is an even function of z; equation

(47) results because Xb is constrained to - 0 as I z co .

Equations (44), (46), and (47) define an eigenvalue problem in the sense that

only certain discrete values of k will result in 4i's that satisfy (a) equation (44)

and (b) the boundary conditions imposed by equations (46) and (47). We have

discussed the nature of this eigenvalue problem in some detail in Paper II.

Here we need only note that in the limit that a - 0 and ,8- 0, equation (44) reduces

to equation (18) of Paper II. Therefore, to compute the radius r1 of the marginally

unstable state (proportional to 1/ky), we simply choose an appropriate value for

(v2 ) 1/2 and read off the value of r1 from Figure 1 of Paper II, calculated with
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Pego = 0.025 Me/pc3 , p*o = 0.064 Me/pc3 , and (vz) 1/2 = 18 km/sec. The

modification introduced by the magnetic and cosmic-ray components is obtained

by multiplying this r1 by the factor (1 + a + /3)/2 . The principal result then

to emerge from this study is that the presence of equipartition magnetic and

cosmic-ray components tends to stabilize the gas layer against gravitational

instability, increasing the radius of the marginally unstable state in the

symmetry plane by the factor (1 + a + /)1/2 . In Table 1 we compare the Ledoux

radius (Ledoux 1951) (P,o = 0, B = , ec-o = 0), r 1 calculated in Paper II

(p*. = 0.064 M 0 /pc3 , Beo = , Pec-ro = 0), r1 calculated in Paper III (p*o =

0.064 M,/pc3 , Beo = 3/%G, Pec ro = 0), and r 1 calculated here (pao = 0.064 ME/pc3,

Beo = 3/%G, Pec-ro = 0.50 x 10-12 dynes/cm 2 ), each computed as a function of

(Vt2z) 1/2

m. DISCUSSION

Choosing (V2z)1/2 = 7.5 km/sec and Pego = 1 H atom/cm3 = 0.025 MO/pc3 ,

values typically quoted in the literature, the Jeans' radius IJ for an infinite

uniform gas is 0.638 kpc. All subsequent modifications and improvements to

the Jeans' analysis tend to increase XJ. Specifically, a self-consistent z distri-

bution according to the formula Peg (z)/Pego = sech2 (z/H) increases kj toL =

0.902 kpc (Ledoux 1951), an increase of 41%. The inclusion of a rigid stellar

layer with p.o = 0.064 M,/pc3 and (v 2z) = 18 km/sec increases ,L 

though only slightly, to r1 = 0.953 kpc (Kellman 1972b), an increase of 6%.

The inclusion of an equipartition magnetic field increases r1 by the factor
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(1 + a)l/2 , which for Beo = 3)uG gives 1.10 kpc (Kellman 1972c), an increase of

15%. Finally, a combined equipartition magnetic *field and cosmic-ray gas in-

creases r1 by the factor (1 + a + 8)l1/2, which for Beo = 3uG and&pe, ro

0.50 x 10
- 12 dynes/cm 2 gives 1.31 kpc, an increase of 37%.

ACKNOWLEDGMENTS

The author would like to thank Professor G. B. Field for advice and

encouragement during the course of this work and Dr. L. A. Fisk for a critical

reading of the manuscript. This work was supported in part by a National

Science Foundation Graduate Fellowship while the author was a student at the

University of California at Berkeley, and by NASA Grant No. NGL 21-002-033.

10



REFERENCES

Field, G. B. 1970, unpublished.

Jeans, J. H. 1928, Astronomy and Cosmology, p. 337.

Kellman, S. A. 1972a, in preparation.

Kellman, S. A. 1972b, in preparation.

Kellman, S. A. 1972c, in preparation.

Ledoux, P. 1951, Ann. d'Ap., 14, 438.

Lin, C. C. 1970, The Spiral Structure of Our Galaxy, ed. W. Becker and G.

Contopoulos (Dordrecht: D. Reidel Publishing Co.), p. 377.

McGee, R. X., and Milton, J. A. 1964, Aust. J. Phys., 17, 128.

Parker, E. N. 1966, Ap. J., 145, 811.

11



TABLE 1

RADIUS OF THE MARGINALLY UNSTABLE STATE AS A FUNCTION OF

(v 2 ) 1/2 , P*o Be , AND ecpro
tz eo Pec-re

r1 (Ledoux) rr r 1

(kpc) (kpc) (kpc) (kpc)

(V2 >1/2

| = .o \ pO= 0.064- | Po- 0.064 M,/pc3 p*. = 0.064 Mo/pc3

Beo =0 B 0 Beo = 3J.G l Beo = 3/.LG

ec-,ro =0 P-ro =0 ec-ro =0 eCro = 0.5 x 10-12 dynes/cm

2.5 0.301 0.318 0.67 0.96

5.0 0.601 0.635 0.87 1.10

7.5 0.902 0.953 1.10 1.31

10.0 1.202 1.270 1.40 1.56

15.0 1.803 1.905 2.03 2.11

20.0 2.404 2.540 2.61 2.69

tso



FIGURE CAPTIONS

1. The relation between Be , g, and 1V and the xyz coordinate system.
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